Economics & Sociology

ISSN: 2071-789X eISSN: 2306-3459 DOI: 10.14254/2071-789X
Index PUBMS: f5512f57-a601-11e7-8f0e-080027f4daa0
Article information
Title: “Deliberated Intuition” in Stock Price Forecasting
Issue: Vol. 11, No 3, 2018
Published date: 09-2018 (print) / 09-2018 (online)
Journal: Economics & Sociology
ISSN: 2071-789X, eISSN: 2306-3459
Authors: Tobias Endress
University of Gloucestershire
Keywords: forecasting, decision-making, deliberated intuition, equity predictions, stock prices
DOI: 10.14254/2071-789X.2018/11-3/1
Index PUBMS: 31360a58-cdf3-11e8-92b1-901b0efa6e97
Language: English
Pages: 11-27 (17)
JEL classification: D70, D91, G11, G17, N24

Financial analysis is a topic of interest for both academic research and businesses. Financial analysts are important elements of economic interactions. Nevertheless, there are doubts about the quality of their predictions. Special crowdsourcing platforms facilitate group decisions as an alternative to traditional financial analysis. The objective of this paper is to investigate the quality of predictions by individuals and groups using this alternative approach. Various groups – consisting of laypeople but also financial professionals – were formed purposefully to generate equity forecasts. The data from the experiment suggest that some variables, in terms of participants’ characteristics, have a significant impact on the quality of predictions. The results show that intuition plays an important role in the decision-making process. Also, good predictors base their intuition on several factors. The results led to an explanatory model, which we introduce as “deliberated intuition”, a practice process being different for each individual. It appears that thinking about the problem in different ways and with various techniques contribute to making good predictions. The model may help in designing teams for traditional financial analysts.


1. Aiolfi, M., Rodriguez, M., & Timmermann, A. (2009). Understanding Analysts’ Earnings Expectations: Biases, Nonlinearities, and Predictability. Journal of Financial Econometrics, 8(3), 305-334.

2. Armstrong, J. S. (2001). Combining Forecasts. In J. S. Armstrong (Ed.), Principles of Forecasting: A Handbook for Researchers and Practitioners (pp. 417-439). Norwell, MA: Kluwer/Springer. Retrieved from

3. Barberis, N., & Thaler, R. (2003). Chapter 18 A survey of behavioral finance. In Handbook of the Economics of Finance (Vol. Volume 1, Part B, pp. 1053-1128). Elsevier.

4. Betsch, C. (2004). Präferenz für Intuition und Deliberation (PID) [Preference for Intuition and Deliberation (PID): An Inventory for Assessing Affect- and Cognition-Based Decision-Making]. Zeitschrift für Differentielle und Diagnostische Psychologie, 25(4

5. Bolliger, G. (2004). The characteristics of individual analysts’ forecasts in Europe. Journal of Banking & Finance, 28(9), 2283-2309.

6. Budescu, D. V., & Chen, E. (2015). Identifying Expertise to Extract the Wisdom of Crowds. Management Science, 61(2), 267-280.

7. Camerer, C. F., Loewenstein, G., & Rabin, M. (2011). Advances in Behavioral Economics. Princeton University Press.

8. Chen, H., Hu, Y. & Huang, S. (2018). Monetary Incentive and Crowd-sourced Equity Research. Georgia Tech Scheller College of Business Research Paper No. 17-23,

9. Clement, M. (1999). Analyst forecast accuracy: Do ability, resources, and portfolio complexity matter? Journal of Accounting and Economics, 27(3), 285-303.

10. Dalkey, N. C. (1969). The Delphi method : An experimental study of group opinion. Santa Monica: Rand Corp. ; Distributed by Clearinghouse for Federal Scientific and Technical Information, U.S. Dept. of Commerce, National Bureau of Standards, Institute for

11. Dalkey, N. C., & Helmer-Hirschberg, O. (1962). An experimental application of the Delphi method to the use of experts. Santa Monica: Rand Corp.

12. Dalkey, N. C., Brown, B. B., & Cochran, S. W. (1969). The Delphi Method, III: Use of self-ratings to improve group estimates. Santa Monica: Rand corporation. Retrieved from

13. Dane, E., Rockmann, K. W., & Pratt, M. G. (2012). When should I trust my gut? Linking domain expertise to intuitive decision-making effectiveness. Organizational Behavior and Human Decision Processes, 119(2), 187-194.

14. Davis-Stober, C. P., Budescu, D. V., Broomell, S. B., & Dana, J. (2015). The Composition of Optimally Wise Crowds. Decision Analysis, 12(3), 130-143.

15. de Vries, M., Holland, R. W., & Witteman, C. L. M. (2008). Fitting decisions: Mood and intuitive versus deliberative decision strategies. Cognition and Emotion, 22(5), 931-943.

16. Dhami, S. (2016). The Foundations of Behavioral Economic Analysis. OUP Oxford.

17. Endress, T. (2015). An e-Delphi experiment of quality of equity predictions in online groups. Qualitative Research in Financial Markets, (7).

18. Endress, T. and Gear, T. (2018) "Deliberated Intuition for Groups”: An Explanatory Model for Crowd Predictions in the Domain of Stock-Price Forecasting. In: Proceedings of the 51st Hawaii International Conference on System Sciences 2018. Hawaii Internatio

19. Endress, T., & Gear, T. (2015). Stock Prices: Are Intuitive or Deliberate Persons Better Forecasters?. Economics & Sociology, 8(4), 43-50.

20. Fleischer, J. (2005). Die Performance von Analystenempfehlungen [The performance of analyst recommendations] (1. Aufl.). Wiesbaden: Gabler.

21. Gigerenzer, G. (2008). Bauchentscheidungen: Die Intelligenz des Unbewussten und die Macht der Intuition [Gut Feelings: The Intelligence of the Unconscious]. München: Goldmann.

22. Glöckner, A., & Witteman, C. (2010). Beyond dual-process models: A categorisation of processes underlying intuitive judgement and decision making. Thinking & Reasoning, 16(1), 1-25.

23. Goldstein, D. G., McAfee, R. P., & Suri, S. (2014). The wisdom of smaller, smarter crowds (pp. 471-488). ACM Press.

24. Gray, L., & Diehl, P. (1992). Research methods for business and management. New York [etc.]: Macmillan.

25. Harteis, C., & Gruber, H. (2008). Intuition and Professional Competence: Intuitive Versus Rational Forecasting of the Stock Market. Vocations and Learning, 1(1), 71-85.

26. Hong, L., & Page, S. E. (2004). Groups of diverse problem solvers can outperform groups of high-ability problem solvers. Proceedings of the National Academy of Sciences of the United States of America, 101(46), 16385-16389.

27. Jackson, S. A., Kleitman, S., Stankov, L., & Howie, P. (2017). Individual Differences in Decision Making Depend on Cognitive Abilities, Monitoring and Control. Journal of Behavioral Decision Making, 30(2), 209-223.

28. Jame, R., Johnston, R., Markov, S., & Wolfe M. (2016). The Value of Crowdsourced Earnings Forecasts, Journal of Accounting Research. 54(4), 1077-1110.

29. Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded rationality. American Psychologist, 58(9), 697-720.

30. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 263-291.

31. Kaplan, C. A. (2001). Collective intelligence: A new approach to stock price forecasting. In IEEE International Conference on Systems Man and Cybernetics (Vol. 5, pp. 2893-2898).

32. Kasthurirathna, D., & Piraveenan, M. (2015). Emergence of scale-free characteristics in socio-ecological systems with bounded rationality. Scientific Reports, 5, 10448.

33. Lin, M. (2017). The effect of 52 week highs and lows on analyst stock recommendations. Account Finance,

34. Lindqvist, P., & Nordänger, U. K. (2007). (Mis- ?) using the E-Delphi Method: An attempt to articulate the practical knowledge of teaching. Journal of Research Methods and Methodological Issues, Volume 1(issue 1, 2007). Retrieved from http://www.scientifi

35. Løhre, E., & Teigen, K. H. (2017). Probabilities Associated with Precise and Vague Forecasts. Journal of Behavioral Decision Making, n/a-n/a.

36. Malkiel, B. (2007). A random walk down Wall Street : The time-tested strategy for successful investing (9th ed.). New York: W.W. Norton.

37. Mannes, A. E., Soll, J. B., & Larrick, R. P. (2014). The wisdom of select crowds. Journal of Personality and Social Psychology, 107(2), 276-299.

38. Marwala, T. (2013). Semi-bounded Rationality: A model for decision making. ArXiv Preprint ArXiv:1305.6037. Retrieved from

39. Nguyen, M. (2018). A New Decision Making Model based on the Made in Vietnam Lean Management Philosophy. Economics & Sociology, 11(1), 44-60.

40. Olsson, H., & Loveday, J. (2015). A Comparison of Small Crowd Selection Methods. In CogSci. Retrieved from

41. Paddock, E. L., Ko, J., Cropanzano, R., Bagger, J., El Akremi, A., Camerman, J., … Van den Bos, K. (2015). Voice and Culture: A Prospect Theory Approach. Journal of Behavioral Decision Making, 28(2), 167-175.

42. Parker, A. M., & Stone, E. R. (2014). Identifying the Effects of Unjustified Confidence versus Overconfidence: Lessons Learned from Two Analytic Methods. Journal of Behavioral Decision Making, 27(2), 134-145.

43. Plano, C. V. L., & Badiee, M. (2010). Research questions in mixed methods research. In A. Tashakkori & C. Teddli (Eds.), SAGE handbook of mixed methods in social behavioral research (2nd ed., pp. 275-304). Los Angeles: SAGE Publications.

44. Prelec, D., Seung, H. S., & McCoy, J. (2017). A solution to the single-question crowd wisdom problem. Nature, 541(7638), 532-535.

45. Price, M. C., & Norman, E. (2008). Intuitive decisions on the fringes of consciousness: Are they conscious and does it matter?. Judgment and Decision Making, 3(1), 28.

46. Prpić, J., & Shukla, P. (2016). Crowd Science: Measurements, Models, and Methods (pp. 4365-4374). IEEE.

47. Prpić, J., Taeihagh, A., & Melton, J. (2015). The Fundamentals of Policy Crowdsourcing: The Fundamentals of Policy Crowdsourcing. Policy & Internet, 7(3), 340-361.

48. Roger, P., Roger, T., & Schatt, A. (2015). Behavioral Biases in Number Processing: The Case of Analysts’ Target Prices. SSRN Electronic Journal.

49. Schunk, D., & Betsch, C. (2006). Explaining heterogeneity in utility functions by individual differences in decision modes. Journal of Economic Psychology, 27(3), 386-401.

50. Silver, N. (2012). The signal and the noise: why so many predictions fail--but some don’t. New York: Penguin Press.

51. Simon, H. A. (1955). A Behavioral Model of Rational Choice. The Quarterly Journal of Economics, 69(1), 99-118.

52. Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129-138.

53. Slovic, S., & Slovic, P. (Eds.). (2015). Numbers and nerves: information, emotion, and meaning in a world of data. Corvallis, OR: Oregon State University Press.

54. Stanzel, M. (2007). Qualität des Aktienresearch von Finanzanalysten : Eine theoretische und empirische Untersuchung der Gewinnprognosen und Aktienempfehlungen am deutschen Kapitalmarkt [Quality of equity research of financial analysts: A theoretical and e

55. Steyvers, M., & Miller, B. (2015). Cognition and Collective Intelligence. Handbook of Collective Intelligence, 119.

56. Tetlock, P. E. (2005). Expert political judgment how good is it? How can we know? Princeton, N.J.: Princeton University Press.

57. Tetlock, P. E., & Gardner, D. (2015). Superforecasting: the art and science of prediction (First edition). New York: Crown Publishers.

58. Traufetter, G. (2009). Intuition die Weisheit der Gefühle [Intuition the Wisdom of Feelings]. Reinbek/Hamburg: Rowohlt-Taschenbuch-Verl.

59. Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 185(4157), 1124-1131.

60. Tversky, A., & Kahneman, D. (2002). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. In T. Gilovich, D. W. Griffin, & D. Kahneman (Eds.), Heuristics and biases: the psychology of intuitive judgement. New York: Cambr

61. Wang, M., Rieger, M. O., & Hens, T. (2017). The Impact of Culture on Loss Aversion. Journal of Behavioral Decision Making, 30(2), 270-281. New York: Cambridge University Press.