Economics & Sociology

ISSN: 2071-789X eISSN: 2306-3459 DOI: 10.14254/2071-789X
Index PUBMS: f5512f57-a601-11e7-8f0e-080027f4daa0
Article information
Title: The metacognitive self: The role of motivation and an updated measurement tool
Issue: Vol. 12, No 1, 2019
Published date: 03-2019 (print) / 03-2019 (online)
Journal: Economics & Sociology
ISSN: 2071-789X, eISSN: 2306-3459
Authors: Hanna Brycz
University of Gdansk

Roman Konarski
University of Gdansk

Paweł Kleka
Adam Mickiewicz University of Poznań

Rex Wright
University of North Texas
Keywords: metacognition, biases, motivation, metacognitive self, tool to measure metacognitive self, MCSQ-21
DOI: 10.14254/2071-789X.2019/12-1/12
Index PUBMS: 57cb92d3-5d5b-11e9-8b68-fa163e6feac6
Language: English
Pages: 208-232 (25)
JEL classification: D02, O17, P31
Research reported in this article was financed under National Science Centre grant agreement number 2013/11/B/HS6/01463.

The aim of this article is to present the theoretical motivational background regarding metacognitive self, which is being aware of how biases and psychological rules (like classic conditional) influence one’s own behavior. Based on this framework, we used a Polish nationwide representative sample to create a reliable tool (the first study: n = 1200, the next study n = 600, Partner in Business Strategy Company as an external contractor, who served as data collector). Until now, the MCSQ-40 questionnaire has been used. After modification – changing the continuous scale into a 6-point scale – and a survey of a representative sample of the Poles, a single-factor structure of metacognitive self was developed, and 21 items out of 40 previously used were selected. This resulted in developing a new tool: MCSQ-21. We assessed the congruent and concurrent validity of this instrument.


1. Alice, M. D., Dunning, D. A., Krueger, J. I. (eds.). (2005). The self in social judgment. New York–Hove: Psychology Press.

2. Becker, L. B., & Kosicki, G. (1995). Understanding the message – producer/message receiver transaction. Research in Political Psychology, 7, 33-62.

3. Belanger, J. J., Schumpe, B. M., Lafreniere, M-A. K., Giacomantonio M., Brizi, A., Kruglanski, A. (2016). Beyond goal-commitment: How expectancy shapes means evaluation. Motivation Science, 2(2), 67-84. Doi: 10.1037/mot000031

4. de Acedo Lizarraga, M. L. S., & de Acedo Baquedano, M. T. S. (2013). How creative potential is related to metacognition. European Journal of Education and Psychology, 2, 69–81.

5. Bar-Tal, Y. (1994). The Effect of mundane decision making of the need and ability to achieve cognitive structure. European Journal of Personality, 8, 45-58.

6. Bar-Tal, Y., Brycz, H., Dolinska B., & Dolinski, D. (2017). When saying that you are biased means that you are accurate? The moderating effect of cognitive structuring on relationship between metacognitive self and confirmation bias use. Current Psycholog

7. Beer, N., & Moneta, G. (2010). Construct and concurrent validity of the Positive Metacognitions and Positive Meta – Emotions Questionnaire. Personality and Individual Differences, 49, 977–982.

8. Brinol, P., DeMarree, K. G. (eds.). (2012). Social Metacognition. New York: Psychology Press Francis & Taylor Group.

9. Brunner, M., & Sub, H.-M. (2005). Analyzing the reliability of multidimensional measures: An example from intelligence research. Educational and Psychological Measurement, 65(2), 227-240.

10. Bryant, F. B., & Satorra, A. (2012). Principles and practice of scaled difference Chi-Square testing. Structural Equation Modeling, 19, 372-398.

11. Brycz, H. (2011). Perception accuracy of biases in self and in others. Psychology Research 1(3), 203- 215.

12. Brycz, H., & Karasiewicz, K. (2011). Metacognition and self-regulation: the Metacognitive Self Scale. Acta Neuropsychologica, 9(3), 263-498.

13. Brycz, H. (2011). Motivational research in Poland. Metacognitive Self as motivational regulatory fit. Society for the Study of Motivation Annual Meeting; a speech given at Presidential Symposium; Washington DC.

14. Brycz, H. (2014). Metacognitive self and the elements of human ability to self-regulate. Journal of Neuroscience and Sensory Applications, 1, 1–5.

15. Brycz, H., Wyszomirska-Góra, M., Bar-Tal, Y., & Wiśniewski, P. (2014). The effect of metacognitive self on confirmation bias revealed in relation to community and competence. Polish Psychological Bulletin, 45, 306–311.

16. Brycz, H., Wyszomirska-Góra, M., Konarski, R., & Wojciszke, B. (2018). Metacognitive self fosters drive for self-knowledge. The role of metacognitive self to search diagnostic information about self. Polish Psychological Bulletin, 49(1), 66-76.

17. Cai, L., Thissen, D., & du Toit, S. (2011). IRTPRO: User’s guide (Version 7.3) [Computer software]. Chicago: Scientific Software International.

18. Chapman, L. J., & Chapman, J. (1969). Illusory correlation as an obstacle to use of the valid psychodiagnostic signs. Journal of Abnormal Psychology, 74, 271-280.

19. Carthwright-Hatton, S., & Wells, A. (1997). Beliefs about worry and intrusions. The metacognition questionnaire and its correlates. Journal of Anxiety Disorders, 11, 279-296.

20. Cialdini, R. (1993). Influence. Science and Practice. Harper Collins College Publisher.

21. Colvin, C., Block, J. (1994). Do positive illusions foster mental health? An examination of the Taylor and Brown Formulation. Psychological Bulletin, 116, 3–20.

22. Danaj, A., Lazanyi, K., & Bilan Y. (2018). Perceptions and implications of immigration in France - economic, social, political and cultural perspectives. Economics & Sociology, 11(3), 226-247. Doi: 10.14254/2071-789X.2018/11-3/14

23. De Ridder, D., Kroese, F., & Gillebaart, M. (2018). Whatever happened to self-control? A proposal for integrating notions from Trait Self-Control Studies into State Self-Control Research. Motivation Science, 4(1), 39-49. doi: 10.1037/mot0000062

24. Dragan, W., & Dragan, M. (2011). Polish validation of MCQ-30 [Polska adaptacja skali MCQ-30]. Psychiatria Polska, 45, 545–553.

25. Dunlosky, J., & Metcalfe, J. (2009). Metacognition. Thousand Oaks: Sage.

26. Dweck, C. (2000). Self-theories. Their role in motivation, and development. Hove: Psychology Press & Taylor and Francis Group, LLC.

27. Efklides, A. (2008). Metacognition: Defining its facets and levels of functioning in relation to self-regulation and co-regulation. European Psychologist, 13, 277–287.

28. Efklides, A., & Valachopoulos, S. (2012). Measurement of metacognitive knowledge of self, task, and strategies in mathematics. European Journal of Psychological Assessment, 28, 227–239.

29. Flavell, J. (1979). Metacognition and cognitive monitoring: A new area of cognitive developmental inquiry. American Psychologist, 34, 906–911.

30. Fleming, N. C. (2013). Political extremes and extremist politics. Political Studies Review, 12(3), 395-401. Doi: 10.1111/1478-9302.12030

31. Gadermann, A. M., Guhn, M., & Zumbo, B. D. (2012). Estimating ordinal reliability for Likert-type and ordinal item response data: A conceptual, empirical, and practical guide. Practical Assessment Research & Evaluation, 17(3), 1-13.

32. Graham, J. M. (2006). Congeneric and (essentially) tau-equivalent estimates of score reliability. Educational and Psychological Measurement, 66(6), 930-944.

33. Ghorbani, N., Watson, P. J., & Hargis, M. B. (2010). Integrative Self-Knowledge Scale: Correlations and incremental validity of a cross-cultural measure developed in Iran and the United States. The Journal of Psychology, 142(4), 395-412. doi: 10.3200/JRPL

34. Gendolla, G. H. E., & Wright, R. A. (2018). Updates on the Development of Motivation Science. Motivation Science, 4(1), 1-3. doi: 10.1037/mot0000102

35. Goldberg, L. R. (1992). The development of markers of Big Five factor structure. Psychological Assessment, 4(1), 26-42.

36. Guilford, J. P. (1981). Higher-order structure-of-intellect. Multivariate Behavioral Research, 16, 411–435.

37. Gunnel, J. (2009). Political Inquiry and the Metapractical Voice. Political Research Quarterly, 62(1), 3-15. doi: 10.1177/10659112908317025

38. Harvey, J. H., & Smith, W. P. (1977). Social Psychology: An attributional approach. Saint Louis: The C. V. Mosby Comp.

39. Heider, F. (1958). The psychology of interpersonal relationship. New York: Wiley.

40. Hefer, C., & Dreisbach, G. (2016). The motivational modulation of proactive control in a modified version of the AX-Continous Performance Task: Evidence from cue-based and prime-based preparation. Motivation Science, 2(2), 116-134. doi:10.1037/mot0000034

41. Herrmann, M., & Brandstatter, V. (2015). Action crisis and goal disangagemet: Longitudinal evidence on the perspective validity of motivational phase in goal striving. Motivationa Science, 1(2), 121-136. Doi: 10.1037/mot0000016

42. Higgins, E.T. (1996). The “self digest”: self-knowledge serving self-regulatory functions. Journal of Personality and Social Psychology, 71(6), 1062–1083.

43. Higgins, E. T., & Kruglanski, A. W. (2000) (Eds.). Motivational Science. Social and Personality Perspectives. Psychology Press: Francis & Taylor Group.

44. Jost, J., Kruglanski, A., & Nelson, T. (1998). Social Metacognition: An expansionist review. Personality and Social Psychology Review, 2, 137-154.

45. Kephart W. M. (1950). The sociology of the minority. Phylon, 11(1), 42-49. Doi: 10.2307/271857

46. Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological Review, 80, 237–251.

47. Kolić-Vehovec, S., Bajšanski, I., & Zubković, B. R. (2010). Metacognition, and reading comprehension: Age and gender differences. In: A. Efklides, P. Misailidi, Trends and prospects in metacognition research (pp. 327–344). Springer: Science & Business Med

48. Konarski, R., & Brycz, H. (2017). Construct and concurrent validity of the Positive Metacognitions and Positive Meta-Emotions Questionnaire in the Polish population. SAGE Open, 1(7). Doi: 10.1177/2158244017705423

49. Koriat, A. (2007). Metacognition and consciousness. In: P. Zelazo, M. Moscovitch (eds.), The Cambridge handbook of consciousness (pp. 289–325). Cambridge: Cambridge University Press.

50. Kruglanski, A. W. (1989). Lay epistemics and human knowledge: Cognitive and motivational biases. New York: Plenum.

51. Langer, E. (1975). The illusion of control. Journal of Personality and Social Psychology, 32, 311–329.

52. Markowska - Przybyła, U., & Ramey, D. (2015). Social capital and polish students’ behavior in experimental games designed to illustrate cooperation. Economics & Sociology, 8(4), 191-206. Doi: 10.14254/2071-789X.2015/8-4/14

53. McDonald, R. P. (1999). Test Theory: A unified treatment. Mahwah, New Jersey: LEA.

54. Miller, M. B. (1995). Coefficient alpha: A basic introduction from the perspectives of classical test theory and structural equation modeling. Structural Equation Modeling, 2(3), 255-273.

55. Muthén, L. K., & Muthén, B. O. (2014). Mplus: Statistical analysis with latent variables (Version 7.4) [Computer program]. Los Angeles: Muthén & Muthén.

56. Nelson, T., & Narens, L. (1990). Metamemory: A theoretical framework and new findings. In: G. H. Bower (eds.), The psychology of learning and motivation: Advances in research and theory, 26, (pp. 125–173). San Diego: Academic Press.

57. Nisbett, R. E., & Ross, L. (1980). Human inferences: Strategies and shortcomings of social judgment. New Jersey: Prentice Hall.

58. Nisbett, R. E., & Borgida, E. (1975). Attribution and the psychology of prediction. Journal of Personality and Social Psychology, 32, 227-236.

59. Pilarska, A. (2016). Psychometric properties and validation of the Polish translation of the Integrative Self-Knowledge Scale. Polskie Forum Psychologiczne, 21, 378-393. doi: 10.14656/PFP20160304

60. Pressley, M. (2000). Development of grounded theories of complex cognitive processing: Exhaustive within- and between- study analyses on thinking aloud data. In: J. Impara, G. Schraw, C. Impara (eds.), Issues in the measurement of metacognition (pp. 261–2

61. Pronin, E., Lin, D., & Ross, L. (2002) The bias blind spot: Perceptions of bias in self versus others. Personality and Social Psychology Bulletin, 28, 369-381

62. Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47(5), 667-696.

63. Raykov, T. (1997). Estimation of composite reliability for congeneric measures. Applied Psychological Measurement, 21(2), 173-184.

64. Robb, H. S. (1978). A theoretical note on the sociology of inter- group relations. Ethnic and Racial Studies, 1(4), 465-473. doi: 10.1080/01419870.1979.9993245

65. Sachs, J. (2001). Aristotle on the soul and on memory and recollection. Santa Fe, NM: Green Lion Press.

66. Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In: A. Von Eye, C. C. Clogg (Eds.), Latent variable analysis: Applications to developmental research (pp. 399-419). Newbury Park, CA

67. Scholer, A. A., & Miele, D. B. (2016). The role of metamotivation in creating task – motivation fit. Motivation Science, 2 (3), 171-196. doi: 10.1037/mot0000043

68. Schraw, G., & Dennison, R. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19, 460–475.

69. See, Y. H. M., Petty, R. E., & Fabrigar, L. R. (2008). Affective and cognitive meta-bases of attitudes: Unique effects on information interest and persuasion. Journal of Personality and Social Psychology, 94, 938–955.

70. Showers, C., & Kling, K. (1996). Organization of self- knowledge: Implications for recovery from sad mood. Journal of Personality and Social Psychology, 70, 578–590.

71. Strus, W., Cieciuch, J., & Rowinski, T. (2014). Lexical approach to Big Five: Short Questionnaire IPIP-BFM – 50 [Polska Adaptacja Kwestionariusza IPIP – BFM – 50 do pomiaru Pięciu Cech Osobowości w Ujęciu Leksykalnym]. Annals of Psychology, 2, 327-346.

72. Schlosser, T., Dunning, D., Johanson, K., L., & Kruger, J. (2013). How the unaware are unskilled? Empirical test of “signal extraction” counterexplanation for the Dunning – Kruger effect in self- evaluation of performance. Journal of Economic Psychology,

73. Schwarz, N. (2015). Metacognition. In: M. Mikelincer, P. R. Shaver (Eds.). APA Handbook of Personality and Social Psychology: Vol 1Attitudes and social cognition, (pp. 203–229), APA.

74. Queen, T. L., & Hess T. (2018). Linkages between resources, motivation, and engagement in everyday activities. Motivation Science, 4(1), 60–77. Doi: 10.1037/mot0000064

75. Taylor, S. E., & Brown, J. D. (1988). Illusion and well-being: A social psychological perspective on mental health. Psychological Bulletin, 103, 193-210.

76. Thissen, D., & Orlando, M. (2001). Item response theory for items scored in two categories. In: D. Thissen, H. Wainer (eds.), Test Scoring (pp. 73–140). Hillsdale: Lawrence Erlbaum Associates.

77. Topolewska, E., Skimma, E., Strus, W., Cieciuch, J., & Rowinski, T. (2014). Short Questionnaire for measuring Big Five IPIP-BFM-20 [Krótki Kwestionariusz do Pomiaru Wielkiej Piątki IPIP – BFM-20]. Annals of Psychology, 2, 367-384.

78. Weiner, B. (2018). The legacy of an attribution approach to motivation and emotion: A Non-Crisis Zone, Motivation Science, 4 (1), 4-14. 10.1037/mot0000102

79. Wells, A. (2009). Metacognitive therapy for anxiety and depression. New York: Guilford Press.

80. Wells, A., & Purdon, C. (1999). Metacognition and Cognitive Behavior Therapy: A special issue. Clinical Psychology and Psychotherapy, 6, 71-72.

81. Wells, A., & Matthews, G. (1996). Modeling cognition in emotional disorder: The S- REF model. Behavior Research and Therapy, 34, 881–888.

82. Wegener, D. T., & Petty, R. E. (1995). Flexible correction processes in social judgments: The role of naïve theories in correction for perceived bias. Journal of Personality and Social Psychology, 68, 36-51.

83. Wundt, W. (1883). Über die Messung psychischer Vorgänge [On the measurement of psychological processes]. Philosophische Studien, 1, 251–260.

84. Wundt, W. (1896). Grundriss der Psychologie [Outline of psychology]. Leipzig, Germany: Engelmann.

85. Yung, Y.-F., Thissen, D., & McLeod, L. D. (1999). On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika, 64(2), 113-128.

86. Zinbard, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach's α, Revelle's β, McDonald's ωH: Their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70(1), 123-133.