Economics & Sociology

ISSN: 2071-789X eISSN: 2306-3459 DOI: 10.14254/2071-789X
Index PUBMS: f5512f57-a601-11e7-8f0e-080027f4daa0
Article information
Title: Short-term Shocks and Long-term Relationships of Interdependencies Among Central European Capital Markets
Issue: Vol. 10, No 1, 2017
Published date: 03-2017 (print) / 03-2017 (online)
Journal: Economics & Sociology
ISSN: 2071-789X, eISSN: 2306-3459
Authors: Michał Bernard Pietrzak
Nicolaus Copernicus University

Marcin Fałdziński
Nicolaus Copernicus University

Adam P. Balcerzak
Nicolaus Copernicus University

Tomáš Meluzín
Brno University of Technology

Marek Zinecker
Brno University of Technology
Keywords: cointegration analysis, DCC-GARCH model, conditional variance, conditional correlation, short-term shocks
DOI: 10.14254/2071-789X.2017/10-1/5
Index PUBMS: 910f024e-003e-11e8-94c4-fa163e5d4f72
Language: English
Pages: 61-77 (17)
JEL classification: G15, C58
Website: http://www.economics-sociology.eu/?470,en_short-term-shocks-and-long-term-relationships-of-interdependencies-among-central-european-capital-markets
Licenses:
Abstract

The article focuses on the problem of interdependences among Central European capital markets. The main aim of this research is to identify long-term interdependences among Austrian, Czech, Hungarian and Polish capital markets and the market of Germany. Additionally, the impact of short-term shocks on these markets is under evaluation. In the first step of the research the interdependencies among the capital markets in the years 1997-2015 were verified. For this purpose the DCC-GARCH model with the conditional t-distribution was used. In the second step, an analysis of cointegration for the interdependencies among the markets was carried out. The authors proposed to include conditional variances of the analysed markets as additional explanatory variables in the cointegration analysis. As the conditional variance most often reflects the impact of short-term shocks, the proposed approach allowed to take into account short-term market shocks in the cointegration analysis. The results enabled to identify long-term path for the course of the interdependences among markets of Germany, Austria, Czech Republic, Hungary and Poland. The mentioned Central European capital markets make a group of markets characterized with similar long-term path, which are focused around the dominant market of Germany.

Bibliography

1. Andersen, T. G., Bollerslevb, T., & Langed, S. (1999), Forecasting Financial Market Volatility: Sample Frequency Vis-à-vis Forecast Horizon, Journal of Empirical Finance, 6(5), pp. 457-477, DOI: 10.1016/S0927-5398(99)00013-4.

2. Arshanapalli, B., Doukasb, J., & Langc, L. H. P. (1995), Pre and Post-October 1987 Stock Market Linkages Between U.S. and Asian Markets, Pacific-Basin Finance Journal, 3(1), pp. 57-73, DOI: 10.1016/0927-538X(94)00025-3.

3. Avdoulas, C., Bekiros, S., & Boubaker, S. (2016), Detecting Nonlinear Dependencies in Eurozone Peripheral Equity Markets: A Multistep Filtering approach, Economic Modelling, 58, pp. 580-587, DOI: 10.1016/j.econmod.2016.02.001.

4. Baek, I.-M., & Jun, J. (2011), Testing Contagion of the 1997-98 Crisis in Asian Stock Markets with Structural Breaks and Incubation Periods, Journal of Asian Economics, 22(5), pp. 356-368, DOI:10.1016/j.asieco.2011.05.005.

5. Balcerzak, A. P. (2009), Effectiveness of the Institutional System Related to the Potential of the Knowledge Based Economy, Ekonomista, 6, pp. 711-739.

6. Balcerzak, A. P. (2016a), Technological Potential of European Economy. Proposition of Measurement with Application of Multiple Criteria Decision Analysis, Montenegrin Journal of Economics, 12(3), pp. 7-17, DOI: 10.14254/1800-5845.2016/12-3/1.

7. Balcerzak, A. P. (2016b), Fiscal Burden in the European Union Countries, Economic Annals XXI, 161(9-10), pp. 4-6, DOI: https://doi.org/10.21003/ea.V161-01.

8. Balcerzak, A. P., Fałdziński, M., Meluzín, T., Pietrzak, M. B., & Zinecker, M. (2016), Interdependence among Capital Markets of Germany, Poland and Baltic States. Application of DCC-GARCH Model, In: M. Čulík (ed.), Managing and Modeling Financial Risks, 8

9. Balcerzak, A. P. & Pietrzak, M. B. (2016a), Structural Equation Modeling in Evaluation of Technological Potential of European Union Countries in the Years 2008-2012, In: M. Papież & S. Śmiech (eds.), The 10th Professor Aleksander Zelias International Conf

10. Balcerzak, A. P. & Pietrzak, M. P. (2016b), Application of TOPSIS Method for Analysis of Sustainable Development in European Union Countries, In: T. Loster & T. Pavelka (eds.), The 10th International Days of Statistics and Economics. Conference Proceeding

11. Balcerzak, A. P. & Pietrzak, M. B. (2017), Human Development and Quality of Institutions in Highly Developed Countries, In: M. H. Bilgin, H. Danis, E. Demir, & U. Can (eds.), Financial Environment and Business Development. Proceedings of the 16th Eurasia

12. Balcerzak, A. P., Pietrzak, M. B., & Rogalska, E. (2016), Fiscal Contractions in Eurozone in the years 1995-2012: Can non-Keynesian effects be helpful in future deleverage process? In: M. H. Bilgin, H. Danis, E. Demir, & U. Can (eds.), Business Challenges

13. Balcerzak, A. P., & Rogalska, E. (2016), Non-Keynesian Effects of Fiscal Consolidations in Central Europe in the Years 2000-2013, In: M. H. Bilgin, & H. Danis (eds.), Entrepreneurship, Business and Economics – Vol. 2. Proceedings of the 15th Eurasia Busin

14. Baur, D. (2003), Testing for Contagion – Mean and Volatility Contagion, Journal of Multinational Financial Management, 13, pp. 405-422.

15. Bein, M. A. & Tuna, G. (2015), Volatility Transmission and Dynamic Correlation Analysis between Developed and Emerging European Stock Markets during Sovereign Debt Crisis, Romanian Journal of Economic Forecasting, 18(2), pp. 61-80.

16. Billio, M., & Caporin, M. (2010), Market Linkages, Variance Spillover and Correlation Stability: Empirical Evidences of Financial Contagion, Computational Statistics & Data Analysis, 54(11), pp. 2443-2458.

17. Boswijk, H. P., & Doornik, J. A. (2004), Identifying, Estimating and Testing Restricted Cointegrated Systems: An Overview, Statistica Neerlandica, 58(4), pp. 440-465.

18. Corsetti, G., Pericoli, M., & Sbracia, M. (2005), Some Contagion, Some Interdependence: More Pitfalls in Testing for Contagion, Journal of International Money and Finance, 24, pp. 1177-1199.

19. Dajcman, S. (2012), The Dynamics of Return Comovement and Spillovers Between the Czech and European Stock Markets in the Period 1997, Finance a úvěr-Czech Journal of Economics and Finance, 62(4), pp. 368-390.

20. Deltuvaite, V. (2016), Transmission of Shocks Through Stock Markets Channel: the Case of the CEECs, Procedia Economics and Finance, 39, pp. 292-297, DOI: 10.1016/S2212-5671(16)30326-4.

21. Ding, Z., Granger, C. W. J., & Engle, R. F. (1993), A Long Memory Property of Stock Market Returns and a New Model, Journal of Empirical Finance, 1(1), pp. 83-106.

22. Dukic, D., & Dukic, M. (2015), Interdependencies of Markets in Southeastern Europe and Buyback of Shares on Shallow Capital Markets: The Application of Cointegration and Causality Tests, Panoeconomicus, 62(4), pp. 469-491, DOI: 10.2298/PAN1504469D.

23. Engle, R. F., & Granger, C. W. J. (1987), Co-integration and Error Correction: Representation, Estimation and Testing, Econometrica, 55(2), pp. 251-276.

24. Engle, R. F. (2002), Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models, Journal of Business & Economic Statistics, 20, pp. 339-350.

25. Engle, R. F. (2009), Anticipating Correlations A New Paradigm for Risk Management, Princeton and Oxford: Princeton University Press.

26. He, C., & Teräsvirta, T. (1999), Higher-order Dependence in the General Power ARCH Process and a Special Case, Stockholm School of Economics, Working Paper Series in Economics and Finance, No. 315.

27. Fałdziński, M., & Pietrzak, M. B. (2015), The Multivariate DCC-GARCH Model with Interdependence Among Markets in Conditional Variances’ Equations, Przegląd Statystyczny, 62(1), pp. 397-413.

28. Fałdziński, M., Balcerzak, A. P., Meluzín, T., Pietrzak, M. B., & Zinecker, M. (2016), Cointegration of Interdependencies Among Capital Markets of Chosen Visegrad Countries and Germany, In: A. Kocourek, M. Vavrousek (eds.), 34th International Conference M

29. Forbes, K., & Rigobon, R. (2002), No Contagion, Only Interdependence: Measuring Stock Market Comovements, Journal of Finance, 57(5), pp. 2223-2261.

30. Gawrońska-Nowak, B., & Grabowski, W. (2016), Using Genetic Algorithm in Dynamic Model of Speculative Attack, Equilibrium. Quarterly Journal of Economics and Economic Policy, 11(2), pp. 287-306, DOI: http://dx.doi.org/10.12775/EQUIL.2016.013.

31. Glazar, O., & Strielkowski, W. (2010), Turkey and the European Union: possible incidence of the EU accession on migration flows, Prague Economic Papers, 19(3), pp. 218-235, doi: https://doi.org/10.18267/j.pep.373.

32. Guidi, F., & Ugur, M. (2014), An analysis of South-Eastern European stock markets: Evidence on cointegration and portfolio diversification benefits, Journal of International Financial Markets Institutions& Money, 30(1), pp. 119-136, DOI: 10.1016/j.intfin.

33. Hadaś-Dyduch, M. (2015), Polish Macroeconomic Indicators Correlated-prediction with Indicators of Selected Countries, In: M. Papież& S. Śmiech (eds.), The 9th Professor AleksanderZelias International Conference on Modelling and Forecasting of Socio-Econom

34. http://www.finance.yahoo.com.

35. Heryán, T., & Ziegelbauer, J. (2016), Volatility of Yields of Government Bonds Among GIIPS Countries During the Sovereign Debt Crisis in the Euro Area, Equilibrium. Quarterly Journal of Economics and Economic Policy, 11(1), pp. 61-74, DOI: http://dx.doi.o

36. Janda, K., Rausser, G., & Strielkowski, W. (2013), Determinants of Profitability of Polish Rural Micro-Enterprises at the Time of EU Accession, Eastern European Countryside, 19, pp. 177-217, doi: https://doi.org/10.2478/eec-2013-0009.

37. Johansen, S. (1988), Statistical Analysis of Cointegration Vectors, Journal of Economic Dynamics and Control, 12(2-3), pp. 231-254.

38. Johansen, S. (1991), Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models, Econometrica, 59, pp. 1551-1580.

39. Johansen, S. (1995), Likelihood-based Inference in Cointegrated Vector Autoregressive Models, Oxford: Oxford University Press.

40. Karanasos, M., Yfanti, S., & Karoglou, M. (2014), Multivariate FIAPARCH Modelling of Financial Markets with Dynamic Correlations in Times of Crisis, International Review of Financial Analysis, 45, pp. 332-349, DOI: http://dx.doi.org/10.1016/j.irfa.2014.09

41. Kondratiuk-Nierodzińska, M. (2016), New Knowledge Generation Capabilities and Economic Performance of Polish Regions, Equilibrium. Quarterly Journal of Economics and Economic Policy, 11(3), pp. 451-471, DOI: http://dx.doi.org/10.12775/EQUIL.2016.021.

42. Kostanjcar, Z., Jeren, B., & Juretic, Z. (2014), Modelling the Relationship Between Developed Equity Markets and Emerging Equity Markets, In: A. Serguieva, D. Maringer, V. Palade & R. J. Almeida (eds.), 2014 IEEE Conference on Computational Intelligence f

43. Lajtkepová, E. (2016), Differences and Similarities in the Indebtedness of EU Member States after Last Financial Crisis, Oeconomia Copernicana, 7(4), pp. 551-563, DOI: http://dx.doi.org/10.12775/OeC.2016.031.

44. Lupu, I. (2015), European Stock Markets Correlations in a Markov Switching Framework, Romanian Journal of economic Forecasting, 18(3), pp. 103-119.

45. MacKinnon, J. G., Haug, A. A., &Michelis, L. (1999), Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration, Journal of Applied Econometrics, 14, pp. 563-577.

46. Majerová, I. (2016), The Impact of Some Variables on the VAT Gap in the Member States of the European Union, Oeconomia Copernicana, 7(3), pp. 339-355, DOI: http://dx.doi.org/ 10.12775/OeC.2016.020.

47. Meluzín, T., & Zinecker, M. (2016), Trends in IPOs: The Evidence from CEE Capital Markets, Equilibrium. Quarterly Journal of Economics and Economic Policy, 11(2), pp. 327-341, DOI: http://dx.doi.org/10.12775/EQUIL.2016.015.

48. Meluzín, T., Zinecker, M., & Lace, N. (2016), Going Public: Key Factors to Consider by IPO Candidates on Emerging Markets of Poland and the Czech Republic, Engineering Economics, 27(4), pp. 392-404, DOI: http://dx.doi.org/10.5755/j01.ee.27.4.14755.

49. Miklaszewicz, S. (2016), Sovereign Debt Crisis of the Eurozone Countries, Oeconomia Copernicana, 7(3), pp. 357-373, DOI: http://dx.doi.org/10.12775/OeC.2016.021.

50. Müller-Frączek, I., & Pietrzak, M. B. (2011), Przestrzenna analiza stopy bezrobocia w Polsce w latach 2004-2008, In: P. Jedlicka (ed.), Hradeckéekonomické dny 2011. Ekonomickýrozvoj a management regionů, Hradec Králové: Gaudeamus, pp. 205-209.

51. Osińska, M., Dobrzyński, A., & Shachmurove, Y. (2016), Performance of American and Russian Joint Stock Companies on Financial Market. A Microstructure Perspective, Equilibrium. Quarterly Journal of Economics and Economic Policy, 11(4), pp. 819-851, DOI: h

52. Osterwald-Lenum, M. (1992), A Note with Quantiles of the Asymptotic Distribution of the Maximum Likelihood Cointegration Rank Test Statistics, Oxford Bulletin of Economics and Statistics, 54, pp. 461-472.

53. Pericoli, M., & Sbracia, M. (2003), A Primer on Financial Contagion, Journal of Economic Surveys, 17(4), pp. 571-608.

54. Phillips, P., & Perron, P. (1988), Testing for a Unit Root in Time Series Regression, Biometrica, 75(2), pp. 335-346.

55. Pietrzak, M. B. & Balcerzak, A. P (2016a), Quality of Human Capital and Total Factor Productivity in New EU Member States, In: T. Loster & T. Pavelka (eds.), The 10th International Days of Statistics and Economics. Conference Proceedings. September 8-10,

56. Pietrzak, M. B., & Balcerzak, A. P. (2016b), A Spatial SAR Model in Evaluating Influence of Entrepreneurship and Investments on Unemployment in Poland, In: Proceedings of the International Scientific Conference Quantitative Methods in Economics Multiple C

57. Pietrzak, M. B., & Balcerzak, A. P. (2016c), Assessment of Socio-Economic Sustainability in New European Union Members States in the years 2004-2012, In: M. Papież & S. Śmiech (eds.), The 10th Professor Aleksander Zelias International Conference on Modell

58. Pietrzak, M. B., Wilk J.,. Kossowski T., & Bivand, R. (2014), The Identification of Spatial Dependence in the Analysis of Regional Economic Development – Join-count Test Application, In: M. Papież & S. Śmiech (eds.), Proceedings of the 8th Professor Aleks

59. Pohulak-Żołędowska, E. (2016), Innovation in Contemporary Economies, Oeconomia Copernicana, 7(3), pp. 451-466, DOI: http://dx.doi.org/10.12775/OeC.2016.026.

60. Reboredo, J. C., Tiwari, A. K., & Albulescu, C. T. (2015), An Analysis of Dependence Between Central and Eastern European Stock Markets, Economic Systems, 39, pp. 474-490.

61. Syllignakis, M. N., & Kouretas, G. P. (2011), Dynamic Correlation Analysis of Financial Contagion: Evidence from the Central and Eastern European Markets, International Review of Economics and Finance, 20(4), pp. 717-732, DOI: 10.1016/j.iref.2011.01.006.

62. Zinecker, M., Balcerzak, A. P., Fałdziński, M., Meluzín, T., & Pietrzak, M. B. (2016), Application of DCC-GARCH Model for Analysis of Interrelations Among Capital Markets of Poland, Czech Republic and Germany, In: Proceedings of the International Scientif